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In this paper, we use Stein’s method to obtain optimal bounds, both in
Kolmogorov and in Wasserstein distance, in the normal approximation for
the empirical distribution of the ground state of a many-interacting-worlds
harmonic oscillator proposed by Hall, Deckert and Wiseman (Phys. Rev. X 4
(2014) 041013). Our bounds on the Wasserstein distance solve a conjecture
of McKeague and Levin (Ann. Appl. Probab. 26 (2016) 2540–2555).

1. Introduction. In [10], Hall, Deckert and Wiseman proposed a many-interacting-
worlds (MIW) theory for interpreting quantum mechanics. In this theory, quantum theory
can be understood as the continuum limit of a deterministic theory in which there is a large,
but finite, number of interacting classical “worlds”. Here, a world means an entire universe
with well-defined properties, determined by the classical configuration of its particles and
fields.

Hall, Deckert and Wiseman [10] proposed a MIW harmonic oscillator model for N one-
dimensional worlds, where the Hamiltonian for the MIW harmonic oscillator is:

H(x,p) = E(p) + V (x) + U(x).

Here p = (p1, . . . , pN) are the momenta and x = (x1, . . . , xN), x1 > x2 > · · · > xN , the loca-
tions of the N worlds, each regarded as a particle with unit mass,

E(p) =
N∑

n=1

p2
n/2

is the kinetic energy,

V (x) =
N∑

n=1

x2
n

is the potential energy, and

U(x) =
N∑

n=1

(
1

xn−1 − xn

− 1

xn − xn+1

)2

is the “interworld” potential, where x0 = ∞ and xN+1 = −∞, which is a discretization of
Bohm’s quantum potential (see Bohm [1, 2]).

Hall, Deckert and Wiseman [10] showed that in the ground state, where the Hamiltonian
is minimized, all the momenta pn vanish and the locations of the N particles satisfy this
recursion equation:

(1.1) xn+1 = xn − 1

x1 + · · · + xn

, 1 ≤ n ≤ N − 1,

subject to the constraints x1 + · · · + xN = 0 and x2
1 + · · · + x2

N = N − 1.
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Their numerical calculations suggest that the empirical distribution PN of the locations
converges to the standard Gaussian distribution γ as N → ∞, which agrees with the ground
state probability distribution of a quantum harmonic oscillator. Here the empirical distribution
PN is defined by

(1.2) PN(A) := #{n : xn ∈ A}
N

for A ∈ B(R).

In [12], McKeague and Levin proved that the recursion equation (1.1) has a unique solution
if the solution is monotonic, zero-median, namely xm = 0 for N odd and xm = −xm+1 for N

even, where m = (N + 1)/2 if N is odd, and m = N/2 if N is even. They proved that PN

converges to γ as N → ∞.
The Wasserstein distance between PN and γ , denoted by dW(PN,γ ), is defined by

dW(PN,γ ) := sup
|h(x)−h(y)|≤|x−y|

∣∣∣∣
∫
R

hdPN −
∫
R

hdγ

∣∣∣∣.
Using Stein’s method and zero-bias coupling, McKeague and Levin [12] further proved that

dW(PN,γ ) ≤ 4√
logN

,

and conjectured that the correct order of the bound on dW(PN,γ ) should be
√

logN/N .
The Kolmogorov distance between PN and γ , denoted by dK(PN,γ ), is defined by

dK(PN,γ ) := sup
z∈R

∣∣PN

(
(−∞, z]) − γ

(
(−∞, z])∣∣.

In this paper, we prove that the upper and lower bounds on the Wasserstein distance be-
tween PN and γ are both of the order

√
logN/N , thereby proving the conjecture of McK-

eague and Levin [12] while at the same time showing that
√

logN/N is optimal. We also
prove that the upper and lower bounds on the Kolmogorov distance between PN and γ are
both of the order 1/N , showing that 1/N is also optimal. This is a surprising outcome as
optimal bounds on the Kolmogorov distance are usually of no smaller order than those on the
Wasserstein distance for a particular problem.

Our proof of the upper bound on the Wasserstein distance turned out to be an easy conse-
quence of Theorem 1.1 of Goldstein [8] using the zero-bias coupling of McKeague and Levin
[12] and an upper bound on x1. Our approach is also the same as that of the proof of the up-
per bound on the Wasserstein distance for two-sided Maxwell approximation in McKeague,
Peköz and Swan [13], page 109.

REMARK 1.1. Stein’s method is applicable to Wasserstein distance of order p > 1 (see,
e.g., [3, 6, 7, 11] for recent results in this direction). We have not succeeded in obtaining
optimal bounds on the Wasserstein distance of order p > 1 between PN and γ . It remains an
open problem for future research.

Throughout this paper, γ denotes the standard normal distribution. Let N ≥ 2 be an integer
number, we will denote m = (N + 1)/2 if N is odd, and = N/2 if N is even. For a positive
number x, �x	 denotes the greatest integer number which is less than or equal to x, and logx

denotes the natural (base e = 2.7182 . . .) logarithm of x. The symbol C denotes a positive
constant which does not depend on N , and its value may be different at each appearance. We
also denote by {x1, . . . , xN } the unique zero-median and strictly decreasing solution to the
recursion equation (1.1) and by PN the empirical distribution as in (1.2), and let

Sn =
n∑

i=1

xi, 1 ≤ n ≤ N.
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The rest of the paper is organized as follows. In Section 2, we reproduce the construction
of the zero-bias coupling of McKeague and Levin [12] and state the main result. Section 3
focuses on the proof of the bounds on the Kolmogorov distance. The bounds on the Wasser-
stein distance are presented in Section 4. Finally, some technical results are proved in the
Appendix.

2. Main results. Before proving the main result, we will need some preliminary lemmas.
The first lemma establishes the existence of a solution to the recursion relation. This lemma
is proved in McKeague and Levin [12].

LEMMA 2.1. Every zero-median solution {x1, . . . , xN } of (1.1) satisfies the following
properties:

(P1) Zero-mean: x1 + · · · + xN = 0.
(P2) Variance-bound: x2

1 + · · · + x2
N = N − 1.

(P3) Symmetry: xn = −xN+1−n for n = 1, . . . ,N .

Further, there is a unique solution {x1, . . . , xN } of (1.1) such that (P1) holds and

(P4) Strictly decreasing: x1 > · · · > xN .

This solution has the zero-median property, and thus also satisfies (P2) and (P3).

It was shown by Goldstein and Reinert [9] that for any mean zero random variable W with
finite variance σ 2, there exists a random variable W ∗ which satisfies

(2.1) EWf (W) = σ 2
Ef ′(W ∗)

for all absolutely continuous f with E|Wf (W)| < ∞. We say such a W ∗ has the W -zero-
biased distribution. The following result is due to Goldstein and Reinert [9] (see also in Chen,
Goldstein and Shao [4], Proposition 2.1).

LEMMA 2.2. Let W be a random variable with mean zero and finite positive variance
σ 2, and let W ∗ have the W -zero-biased distribution. Then the distribution of W ∗ is absolutely
continuous with density given by

p∗(x) = E
(
W1(W > x)

)
/σ 2 = −E

(
W1(W ≤ x)

)
/σ 2.

We recall that PN denotes the empirical probability measure as in (1.2). McKeague and
Levin ([12], page 9), constructed a zero bias coupling (W,W ∗), where W has the proba-
bility distribution PN . For completeness, we describe the construction in this paper. From
Lemma 2.1, we have Var(W) = (N − 1)/N . By Lemma 2.2, the density of W ∗ is given by

p∗(x) = Sn

N − 1
= 1

(N − 1)(xn − xn+1)
if xn+1 ≤ x < xn,1 ≤ n ≤ N − 1.

This implies that W ∗ is uniformly distributed on each interval [xn+1, xn) with mass 1/(N −
1), 1 ≤ n ≤ N − 1. Let xn+1 < yn < xn such that for 1 ≤ n ≤ N − 1, the area under p∗ on
the interval [yn, xn) is Ln = (N − n)/(N(N − 1)), and for 2 ≤ n ≤ N , the area under p∗ on
the interval [xn, yn−1) is Rn = (n − 1)/(N(N − 1)). Then the area under p∗ on [y1, x1) and
on [xN, yN−1) is 1/N , and on [yn, yn−1) is Ln + Rn = 1/N for 2 ≤ n ≤ N − 1. See Figure 1
below.
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FIG. 1. Density p∗ of W∗.

Now we couple W to W ∗ by defining W and W ∗ on the same probability space with
� = [xN, x1) as the sample space and p∗ as the probability measure as follows: W ∗(w) = ω

for all ω ∈ �, and

W(w) =

⎧⎪⎪⎨
⎪⎪⎩

x1 if ω ∈ [y1, x1),

xn if ω ∈ [yn, yn−1),2 ≤ n ≤ N − 1,

xN if ω ∈ [xN, yN−1).

The following theorem is the main result of the paper.

THEOREM 2.3. Let {xn,1 ≤ n ≤ N} be the unique monotonic zero-mean solution of the
recursion relation (1.1) and PN the empirical distribution. Then

(2.2)
1

2N
≤ dK(PN,γ ) ≤ 58

N
,

and

(2.3)

√
log(N/2)

2N
− C

N
≤ dW(PN,γ ) ≤ 16

√
logN

N
.

3. Bounds on the Kolmogorov distance. In this section, we will prove the Kolmogorov
bounds in (2.2). Here and thereafter, we denote �(z) = γ ((−∞, z]) for z ∈ R.

PROOF OF THE UPPER BOUND IN (2.2). To prove the upper bound in (2.2), it suffices to
consider z > 0 since W is symmetric. For z > 0, we have

(3.1)
∣∣P(W ≤ z) − �(z)

∣∣ ≤ max
{
P(W > z),1 − �(z)

} ≤ 0.5.

If N ≤ 100, then the upper bound in (2.2) holds by (3.1). Therefore we only need to consider
N > 100. For the case where 0 < z < x1, there exists 1 ≤ n ≤ m such that z ∈ [xn+1, xn). In
this case, we have

P(W > z) = n

N
and P

(
W ∗ > z

) = n − 1

N − 1
+ ε,

where ε ≤ 1/(N − 1), and therefore

∣∣P(W ≤ z) − P
(
W ∗ ≤ z

)∣∣ =
∣∣∣∣ n

N
− n − 1

N − 1
− ε

∣∣∣∣
≤ n

N
− n − 1

N − 1
+ ε

≤ 1

N
+ 1

N − 1
≤ 2.02

N
,
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where we have applied N > 100 in the last inequality. For the case where z ≥ x1, we have

P(W > z) = P
(
W ∗ > z

) = 0.

Therefore,

(3.2) sup
z>0

∣∣P(W ≤ z) − P
(
W ∗ ≤ z

)∣∣ ≤ 2.02

N
.

Now we bound the Kolmogorov distance between distribution of W ∗ and γ . Let z > 0,
and let fz be the unique bounded solution of the Stein equation

f ′(w) − wf (w) = 1(w ≤ z) − �(z),

and

gz(w) = (
wfz(w)

)′
.

Then (see Chen and Shao [5], page 248)

(3.3) gz(w) =
⎧⎨
⎩

(√
2π

(
1 + w2)

ew2/2(
1 − �(w)

) − w
)
�(z) if w > z,(√

2π
(
1 + w2)

ew2/2�(w) + w
)(

1 − �(z)
)

if w ≤ z.

From Lemma 2.3 in Chen, Goldstein and Shao [4], we have 0 < fz(w) ≤ √
2π/4, |f ′

z(w)| ≤
1, and therefore

(3.4)
∣∣gz(w)

∣∣ ≤ ∣∣wf ′
z(w)

∣∣ + ∣∣fz(w)
∣∣ ≤ |w| + √

2π/4.

Chen and Shao [5], page 249, proved that gz ≥ 0, gz(w) ≤ 2(1 − �(z)) for w ≤ 0.
We also have the following lemma whose proof is given in the Appendix.

LEMMA 3.1. We have the following properties of gz:

gz(w) increases when w ≤ z and decreases when w > z,(3.5)

gz(w) ≤ 3

2(1 − w)3 for w < 0,(3.6)

and

(3.7) gz(w) ≤ 3

(1 + w)3 for w > z.

Chen and Shao [5] proved that

gz(w) ≤ 2

1 + w3 for w > z.

For large w, this bound is of the same order as (3.7) but with a better constant. We use
(3.7) because we need some technical estimates such as (1 + w)3 ≥ x3

j−1 for w ≥ xj+1,
2 ≤ j ≤ m − 1 (see, e.g., (3.20) and (3.21) below).

The Kolmogorov distance between the distribution of W ∗ and γ can be bounded as fol-
lows:

(3.8)

∣∣P(
W ∗ ≤ z

) − �(z)
∣∣ = ∣∣Ef ′

z

(
W ∗) −EW ∗fz

(
W ∗)∣∣

=
∣∣∣∣ N

N − 1
EWfz(W) −EW ∗fz

(
W ∗)∣∣∣∣

≤ ∣∣EWfz(W) −EW ∗fz

(
W ∗)∣∣ + 1

N − 1
E

∣∣Wfz(W)
∣∣.
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Since 0 < fz(w) ≤ √
2π/4, the last term in (3.8) is bounded by

(3.9)
1

N − 1
E

∣∣Wfz(W)
∣∣ ≤

√
2πEW 2

4(N − 1)
=

√
2π

4
√

N(N − 1)
≤ 1

N
,

where we have used N > 100 in the last inequality. By the definition of gz, we have

(3.10) EWfz(W) −EW ∗fz

(
W ∗) = −E

∫ W ∗−W

0
gz(W + t) dt.

For n ≤ m, from (3.15) of Lemma 3.2 below, we see that xn is bounded by an absolute con-
stant as long as log(m/n) is bounded. To bound the right-hand side of (3.10), we separate W

around m/e3 (we can replace e3 by any constant c > 1, the number e3 is only for convenience
when we compute the explicit constant in (2.2)) as follows:

R1 = E

∣∣∣∣
∫ W ∗−W

0
gz(W + t)1(W ≤ −x�m/e3	) dt

∣∣∣∣,(3.11)

R2 = E

∣∣∣∣
∫ W ∗−W

0
gz(W + t)1

(|W | < x�m/e3	
)
dt

∣∣∣∣,(3.12)

and

(3.13) R3 = E

∣∣∣∣
∫ W ∗−W

0
gz(W + t)1(W ≥ x�m/e3	) dt

∣∣∣∣.
We need the following lemma whose proof will be presented in the Appendix.

LEMMA 3.2. Let N > 100. The following statements hold.

(3.14) 0 ≤ xm ≤ 1

m
.

For 1 ≤ n ≤ m − 1, we have

(3.15) xn ≤
√

2
(
1 + log(m/n)

)
,

and

(3.16)
(

n(n + 1)

2

)1/2
≤ Sn ≤ 3n

2

√
2
(
1 + log(m/n)

)
.

For 1 ≤ n ≤ �m/e3	, we have

(3.17) xn ≥ 1

3

√
2
(
1 + log(m/n)

)
and Sn ≥ n

3

√
2
(
1 + log(m/n)

)
.

For 1 ≤ i < j ≤ �m/e3	, we have

(3.18) x2
i − x2

j ≥ 4 log(j/i)

9
.

REMARK 3.3. By using the first half of (3.17), we have x�m/e3	 ≥ √
8/3. We note also

that m > 50 and Sj ≥ jxj , 1 ≤ j ≤ m. These simple inequalities will be used in many places
later without further mention. For x1, McKeague and Levin [12] proved the following lower
bound:

(3.19) S1 = x1 ≥
√

log(m),

which is of the same order as ours but with a better constant, but their method seems not to
work with xn for n > 1.
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We will now bound R1, R2, and R3. From (1.1) and the first half of (3.16), we have
x1 − x2 = 1/S1 ≤ 1, and

xn−1 − xn+1 = 1

Sn−1
+ 1

Sn

≤
(

2

(n − 1)n

)1/2
+

(
2

n(n + 1)

)1/2
≤ 1

for 3 ≤ n ≤ m, or equivalently,

(3.20) x1 ≤ x2 + 1 and xn−1 ≤ xn+1 + 1 for 3 ≤ n ≤ m.

Let t be a real number lying between 0 and W ∗ − W . From the definitions of W and W ∗, we
observe the following facts.

FACTS 3.4.

(i) If W = x1, then∣∣W ∗ − W
∣∣ ≤ x1 − x2 and x2 ≤ W + t ≤ x1;

(ii) If W = xn, 2 ≤ n ≤ m, then∣∣W ∗ − W
∣∣ ≤ xn−1 − xn and xn+1 ≤ W + t ≤ xn−1;

and, by symmetry, we have

(iii) If W = xN = −x1, then∣∣W ∗ − W
∣∣ ≤ x1 − x2 and − x1 ≤ W + t ≤ −x2;

(iv) If W = xN+1−n = −xn, 2 ≤ n ≤ m, then∣∣W ∗ − W
∣∣ ≤ xn−1 − xn and − xn−1 ≤ W + t ≤ −xn+1.

Keeping Facts 3.4 and the properties of gz in mind, we have

(3.21)

R1 ≤ 1

N

(
(x1 − x2)gz(−x2) +

�m/e3	∑
j=2

(xj−1 − xj )gz(−xj+1)

)

≤ 3

2N

(
x1 − x2

(1 + x2)3 +
�m/e3	∑
j=2

xj−1 − xj

(1 + xj+1)3

)

= 3

2N

(
1

x1(1 + x2)3 +
�m/e3	∑
j=2

1

(1 + xj+1)3Sj−1

)

≤ 3

2N

(
1

x4
1

+
�m/e3	∑
j=2

1

(j − 1)x4
j−1

)

≤ 3

2N

(
2

x4
1

+
�m/e3	−1∑

j=2

81

4j (1 + log(m/j))2

)

≤ 3

2N

(
2

log2(m)
+

∫ m/e3

1

81dx

4x(1 + log(m/x))2

)

= 3

2N

(
2

log2(m)
+ 81

16
− 81

4(1 + log(m))

)
≤ 243

32N
,
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where we have applied (3.5) in the first inequality, and (3.6) in the second inequality, (3.20)
and simple bounds Sj ≥ jxj (1 ≤ j ≤ m) in the third inequality, the first half of (3.17) and
(3.19) in the fourth inequality. The final bound in (3.21) follows from m > 50 and the ele-
mentary inequality 2/ log2(m) ≤ 81/(4(1 + log(m))). For R2, we have

(3.22)

R2 ≤ 2

N

∑
0≤xj<�m/e3	

(xj−1 − xj )(xj−1 + √
2π/4)

= 2

N

∑
�m/e3	<j≤m

(
xj−1

Sj−1
+

√
2π

4Sj−1

)

≤ 2

N

∑
�m/e3	<j≤m

(
1

j − 1
+

√
π

2(j − 1)

)

≤ 2 + √
π

N

(
1

�m/e3	 + 1

�m/e3	 + 1
+

∫ m

m/e3

dx

x

)

≤ 2 + √
π

N

(
1

2
+ 1

3
+ 3

)
≤ 15

N
,

where we have applied (3.4) and Facts 3.4 in the first inequality, the first half of (3.16) and
simple bounds xj/Sj ≤ 1/j (1 ≤ j ≤ m) in the second inequality, and used m > 50 in the
fourth inequality.

To bound R3, we set 	 = min{j : xj ≤ z} and consider the following two cases.
Case 1: x	 < x�m/e3	+1. In this case, we have z < x�m/e3	+1. If W = xj ≥ x�m/e3	, then, by

Facts 3.4,

(3.23) W + t > xj+1 > z for all t lying between 0 and W ∗ − W.

Therefore,

(3.24)

R3 = E

∣∣∣∣
∫ W ∗−W

0
gz(W + t)1(W ≥ x�m/e3	) dt

∣∣∣∣
≤ 1

N

(
(x1 − x2)gz(x2) +

�m/e3	∑
j=2

(xj−1 − xj )gz(xj+1)

)

≤ 3

N

(
x1 − x2

(1 + x2)3 +
�m/e3	∑
j=2

xj−1 − xj

(1 + xj+1)3

)
≤ 243

16N
,

where we have applied (3.5) and (3.23) in the first inequality, and (3.7) and (3.23) in the
second inequality. The last inequality in (3.24) follows by using the same calculations as in
(3.21).

Case 2: x	 ≥ x�m/e3	+1. In this case, we have z ≥ x�m/e3	+1, and R3 is bounded by R31 +
R32 + R33, where

R31 = E

∣∣∣∣
∫ W ∗−W

0
gz(W + t)1(x�m/e3	 ≤ W < x	)dt

∣∣∣∣,(3.25)

R32 = E

∣∣∣∣
∫ W ∗−W

0
gz(W + t)1(x	 ≤ W ≤ x	−1) dt

∣∣∣∣,(3.26)

and

(3.27) R33 = E

∣∣∣∣
∫ W ∗−W

0
gz(W + t)1(W > x	−1) dt

∣∣∣∣.
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Here and thereafter, we denote x0 = x1 and S0 = S1. We of course only need to bound R31
when x�m/e3	 < x	. Since x	 ≤ z, we conclude that if x�m/e3	 ≤ W = xj+1 < x	, then by
Facts 3.4, we have

(3.28)
∣∣W ∗ − W

∣∣ ≤ xj − xj+1 and 0 < W + t < xj ≤ x	 ≤ z

for all t lying between 0 and W ∗ − W . Applying (3.3), (3.28), and Facts 3.4, we have

(3.29) R31 ≤ 1 − �(x	)

N

(�m/e3	−1∑
j=	

(xj − xj+1)
(√

2π
(
1 + x2

j

)
e
x2
j /2 + xj

))
.

Since 1 − �(x	) ≤ e−x2
	 /2/(x	

√
2π), it follows from (3.29) that

(3.30) R31 ≤ 1

N

�m/e3	−1∑
j=	

(1 + x2
j

Sjx	

e
(x2

j −x2
	 )/2 + xj e

−x2
	 /2

√
2πSjx	

)
.

For all 	 ≤ j ≤ �m/e3	, by applying (3.17), we have

(3.31) Sjx	 ≥ Sjxj ≥ 8j/9.

By using (3.17), (3.18), (3.31), and simple inequalities x	 ≥ x�m/e3	 ≥ √
8/3 and xj/Sj ≤ 1/j

(1 ≤ j ≤ m), we have

(3.32)

1 + x2
j

Sjx	

e
(x2

j −x2
	 )/2 + xj e

−x2
	 /2

√
2πSjx	

≤
(

1

Sjxj

+ xj

Sj

)(
	

j

)2/9
+ 3xj

4
√

πSj

exp
(
−1

2

(√
2 log(m/	)

3

)2)

≤
(

9

8j
+ 1

j

)(
	

j

)2/9
+ 3

4
√

πj

(
	

m

)1/9

for all 	 ≤ j ≤ �m/e3	. It follows from (3.30) and (3.32) that

(3.33)

R31 ≤ 1

N

(
17

8

�m/e3	−1∑
j=	

	2/9

j11/9 + 3e−1/3

4
√

π

�m/e3	−1∑
j=	

	1/9

j10/9

)

≤ 1

N

(
17

8

(
1

	
+

∫ m/e3

	

	2/9 dx

x11/9

)
+ 3e−1/3

4
√

π

(
1

	
+

∫ m/e3

	

	1/9 dx

x10/9

))

≤ 1

N

(
17

8

(
1 + 9

2

)
+ 30e−1/3

4
√

π

)
≤ 15

N
.

Now, we bound R32 and R33. If x	 ≥ x3, then

(3.34)

R32 + R33 ≤
3∑

i=1

E

∣∣∣∣
∫ W ∗−W

0
gz(W + t)1(W = xi) dt

∣∣∣∣
≤ 1

N

(
2(x1 − x2)

(
x1 +

√
2π

4

)
+ (x2 − x3)

(
x2 +

√
2π

4

))

= 1

N

(
2(x1 + √

2π/4)

S1
+ x2 + √

2π/4

S2

)
≤ 6

N
,
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where we have applied (3.4) and Facts 3.4 in the second inequality, and the first half of (3.16)
and a simple bound x2/S2 ≤ 1/2 in the last inequality. If x	 ≤ x4, then, similar to (3.34), we
have

(3.35)

R32 = E

∣∣∣∣
∫ W ∗−W

0
gz(W + t)1(x	 ≤ W ≤ x	−1) dt

∣∣∣∣
≤ 1

N

(
x	−1 + √

2π/4

S	−1
+ x	−2 + √

2π/4

S	−2

)

≤ 1

N

(
x3

S3
+

√
2π/4

S3
+ x2

S2
+

√
2π/4

S2

)

≤ 1

N

(
1

3
+

√
2π/4

S3
+ 1

2
+

√
2π/4

S2

)
≤ 2

N
,

and

(3.36)

R33 = E

∣∣∣∣
∫ W ∗−W

0
gz(W + t)1(W > x	−1) dt

∣∣∣∣
≤ 3

N

(
x1 − x2

(1 + x2)3 +
	−2∑
j=2

xj−1 − xj

(1 + xj+1)3

)

≤ 243

16N
,

where, in (3.36), we have applied Facts 3.4 and (3.7) in the first inequality, and used the same
calculations as in (3.21) in the second inequality. Combining (3.33)–(3.36), we have

(3.37) R3 ≤ 515

16N
.

It follows from (3.21), (3.22), and (3.37) that

(3.38)
∣∣EWfz(W) −EW ∗fz

(
W ∗)∣∣ ≤ R1 + R2 + R3 ≤ 1753

32N
.

Combining (3.8), (3.9), and (3.38), we have

(3.39)
∣∣P(

W ∗ ≤ z
) − �(z)

∣∣ ≤ 1

N
+ 1753

32N
= 1785

32N
.

The upper bound of (2.2) follows from (3.2) and (3.39). �

PROOF OF THE LOWER BOUND IN (2.2). The proof of the lower bound in (2.2) follows
from the fact that the Kolmogorov distance between γ and the probability distribution of a
discrete random variable is always greater than half of the minimum of the jumps. In our
case, the jumps are all equal to 1/N . Therefore,

dK(PN,γ ) ≥ 1

2N
. �
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4. Bounds on the Wasserstein distance. PROOF OF (2.3). By Theorem 1.1 of Gold-
stein [8], we have

(4.1)

dW(PN,γ ) ≤ 2E
∣∣W − W ∗∣∣

≤ 2

N − 1

N−1∑
n=1

(xn − xn+1)

= 4x1

N − 1
≤ 4

√
2(1 + log(m))

N − 1

≤ 8
√

logN

N − 1
≤ 16

√
logN

N
,

where we have applied (3.15) in the third inequality, and definition of m in the fourth inequal-
ity. The proof of the upper bound of (2.3) is complete.

For the lower bound of (2.3), we can assume N > 100 since it is trivial when N ≤ 100 and
C ≥ 3. We note that dW(PN,γ ) ≥ |Eh(W)−Eh(Z)| for any 1-Lipschitz function h. We will
use the “sawtooth” piecewise linear function considered in McKeague and Levin [12], which
is defined as follows:

h(w) =

⎧⎪⎪⎨
⎪⎪⎩

0 if w > x1 or w < xN,

w − xn+1 if xn+1 ≤ w < mn,1 ≤ n < N,

xn − w if mn ≤ w < xn,1 ≤ n < N,

where mn = (xn + xn+1)/2, 1 ≤ n < N . Clearly h is 1-Lipschitz and Eh(W) = 0. Simple
calculation gives

(4.2) Eh
(
W ∗) = x1

2(N − 1)
≥

√
log(N/2)

2(N − 1)
≥

√
log(N/2)

2N
,

where we have applied (3.19) in the first inequality.
For this “sawtooth” function h, let fh be the unique bounded solution of the Stein equation

f ′(w) − wf (w) = h(w) −Eh(Z),

and let

gh(w) = (
wfh(w)

)′
.

By Lemma 2.4 in [4], we have ‖fh‖ ≤ 2 and ‖f ′
h‖ ≤ √

2/π . Therefore,

(4.3)
∣∣gh(w)

∣∣ ≤ ∣∣fh(w)
∣∣ + ∣∣wf ′(w)

∣∣ ≤ 2
(
1 + |w|).

It thus follows from (4.2) that

(4.4)

∣∣Eh(W) −Eh(Z)
∣∣ = ∣∣Ef ′

h(W) −EWfh(W)
∣∣

=
∣∣∣∣Ef ′

h(W) −
(

1 − 1

N

)
Ef ′

h

(
W ∗)∣∣∣∣

=
∣∣∣∣EWfh(W) −EW ∗fh

(
W ∗) −Eh

(
W ∗) + 1

N
Ef ′

h

(
W ∗)∣∣∣∣

≥ ∣∣Eh
(
W ∗)∣∣ − ∣∣EWfh(W) −EW ∗fh

(
W ∗)∣∣ − ∣∣∣∣ 1

N
Ef ′

h

(
W ∗)∣∣∣∣

≥
√

log(N/2)

2N
− ∣∣EWfh(W) −EW ∗fh

(
W ∗)∣∣ −

√
2/π

N
.
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The lower bound of (2.3) will follow if we can show that∣∣EWfh(W) −EW ∗fh

(
W ∗)∣∣ ≤ C

N
.

Letting T = W ∗ − W , we have

(4.5) E
∣∣Wfh(W) − W ∗fh

(
W ∗)∣∣ = E

(∣∣T gh(W + ξ)
∣∣),

where ξ is a random variable lying between 0 and T . We will obtain an upper bound on
E(|T gh(W + ξ)|) using the same truncation for W as in the proof for the Kolmogorov bound.
So we let

(4.6) R1 = E
(∣∣T gh(W + ξ)

∣∣1(|W | ≤ x�m/e3	
))

,

and

(4.7) R2 = E
(∣∣T gh(W + ξ)

∣∣1(|W | > x�m/e3	
))

.

For R1, we have

(4.8)

R1 ≤ 2E
(|T |(1 + |W + ξ |)1(|W | ≤ x�m/e3	

))

≤ C

N

m∑
i=�m/e3	

(xi−1 − xi)(1 + xi−1)

= C

N

m∑
i=�m/e3	

(
1

Si−1
+ xi−1

Si−1

)

≤ C

N

m∑
i=�m/e3	

(
1

Si−1
+ 1

i − 1

)
,

where we have applied (4.3) in the first inequality, Facts 3.4 in the second inequality, and
simple bounds xj/Sj ≤ 1/j (1 ≤ j ≤ m) in the third inequality. If �m/e3	 ≤ i ≤ m, then by
using the second half of (3.17), we have Si−1 ≥ S�m/e3	−1 ≥ m/C. Therefore, (4.8) implies

(4.9) R1 ≤ C

N

m∑
i=�m/e3	

(
1

m
+ 1

i − 1

)
≤ C

N
.

To bound R2, we need the following lemma.

LEMMA 4.1. If either x�m/e3	 ≤ xn+1 < w ≤ xn or −xn ≤ w < −xn+1 ≤ −x�m/e3	, then

(4.10)
∣∣gh(w)

∣∣ ≤ C

(
1

log(m/n)
+ 1

n2/9

)
.

We postpone the proof of Lemma 4.1 to the Appendix. Now, we bound R2 as follows:

(4.11)

R2 ≤ C

N

�m/e3	−1∑
n=2

(xn−1 − xn)

(
1

log(m/n)
+ 1

n2/9

)

= C

N

�m/e3	−1∑
n=2

(
1

log(m/n)Sn−1
+ 1

n2/9Sn−1

)

≤ C

N

�m/e3	−2∑
n=1

(
1

n log3/2(m/n)
+ 1

n11/9 log1/2(m/n)

)

≤ C

N
,
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where we have applied Facts 3.4 and Lemma 4.1 in the first inequality, and the second half
of (3.17) in the second inequality. It follows from (4.9) and (4.11) that

(4.12) E
∣∣Wfh(W) − W ∗fh

(
W ∗)∣∣ ≤ C

N
.

Combining (4.4) and (4.12), we have

dW(PN,γ ) ≥
√

log(N/2)

2N
− C

N
,

thereby proving the lower bound of (2.3). �

APPENDIX

In this Appendix, we will prove those lemmas in the previous sections, whose proofs have
been deferred to the Appendix.

PROOF OF LEMMA 3.1. We first prove that

(A.1)
√

2πwew2/2(
1 − �(w)

) ≤ w2 + 2

w2 + 3

for w > 0. This inequality is equivalent to

(A.2)
∫ ∞
w

e−x2/2 dx ≤ w2 + 2

w3 + 3w
e−w2/2.

Let

h(w) = w2 + 2

w3 + 3w
e−w2/2.

Then

h(w) =
∫ ∞
w

(−h′(x)
)
dx.

For x > 0, we have

−h′(x) =
(

1 + 6

(x3 + 3x)2

)
e−x2/2 ≥ e−x2/2

thereby proving (A.2). The proof of (A.1) is complete.
From (3.3) and (A.1), we have for w > z,

g′
z(w) = (√

2π
(
w2 + 3

)
wew2/2(

1 − �(w)
) − 2 − w2)

�(z) ≤ 0,

which proves gz(w) is decreasing for w > z. Similarly, gz(w) is increasing for w ≤ z since
in this case,

g′
z(w) = (

2 + w2 − √
2π

(
w2 + 3

)
(−w)ew2/2(

1 − �(−w)
))(

1 − �(z)
) ≥ 0.

The proof of (3.5) is complete.
Now we prove that for w > 0,

(A.3) 0 <
√

2π
(
1 + w2)

ew2/2(
1 − �(w)

) − w ≤ 3

(1 + w)3 .

The first inequality in (A.3) is proved by Chen and Shao [5]. The second inequality in (A.3)
is equivalent to

(A.4)
∫ ∞
w

e−x2/2 dx ≤
(

w

1 + w2 + 3

(1 + w2)(1 + w)3

)
e−w2/2.
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Let

k(w) =
(

w

1 + w2 + 3

(1 + w2)(1 + w)3

)
e−w2/2, w > 0.

Then

k(w) =
∫ ∞
w

(−k′(x)
)
dx.

For x > 0, we have

−k′(x) =
(

1 + x4 − 5x3 + 6x2 + x + 7

(1 + x2)2(1 + x)4

)
e−x2/2 ≥ e−x2/2

thereby proving (A.4). Combining (3.3) and (A.3), and noting that 1 − �(z) ≤ 1/2, we have

0 ≤ gz(w) ≤ 3

(1 + w)3 for w > z,

and

0 ≤ gz(w) ≤ 3

2(1 − w)3 for w < 0.

This ends the proof of (3.6) and (3.7). �

PROOF OF LEMMA 3.2. From (P3) and (P4) of Lemma 2.1, it is easy to see that xm = 0
if N is odd, and 2xm = xm − xm+1 > 0 if N is even. So we only need to prove the second
inequality in (3.14) for the case where N is even. By (1.1), we have

xj =
m−1∑
i=j

(xi − xi+1) + xm ≥
m−1∑
i=j

1

Si

, 1 ≤ j ≤ m − 1.

Therefore, S1 ≥ 1 and

(A.5)

Sj ≥ 1

S1
+ 2

S2
+ · · · + j − 1

Sj−1
+ j

m−1∑
i=j

1

Si

≥ 1

Sj

+ 2

Sj

+ · · · + j

Sj

= j (j + 1)

2Sj

,

for 2 ≤ j ≤ m − 1. This implies that

(A.6) Sj ≥
(

j (j + 1)

2

)1/2
, 1 ≤ j ≤ m − 1.

Since xm ≥ 0,

Sm ≥ Sm−1 ≥
(

m(m − 1)

2

)1/2
.

If N is even, then xm = −xm+1. So

2xm = xm − xm+1 = 1

Sm

≤
(

2

m(m − 1)

)1/2
.

Therefore,

0 ≤ xm ≤
(

1

2m(m − 1)

)1/2
≤ 1

m
.

This proves (3.14).
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Since {x1, . . . , xN } is decreasing, jxj ≤ Sj ≤ jx1. For 1 ≤ n ≤ m − 1, by using the tele-
scoping sum and (3.14), we have

(A.7)

x2
n =

m−1∑
j=n

(
x2
j − x2

j+1
) + x2

m ≤ 2
m−1∑
j=n

xj (xj − xj+1) + x2
m

= 2
m−1∑
j=n

xj

Sj

+ x2
m ≤ 2

m∑
j=n

1

j

≤ 2
(
1/n + log(m/n)

)
≤ 2

(
1 + log(m/n)

)
.

This proves (3.15). For 2 ≤ n ≤ m − 1,

(A.8)

Sn = x1 + · · · + xn

≤ √
2
(√

1 + log(m) +
√

1 + log(m/2) + · · · +
√

1 + log(m/n)
)

≤ √
2
(√

1 + log(m) +
∫ n

1

√
1 + log(m/x)dx

)
.

Set

In =
∫ n

1

√
1 + log(m/x)dx.

By using integration by parts, we have

(A.9)

In = n
√

1 + log(m/n) −
√

1 + log(m) + 1

2

∫ n

1

dx√
1 + log(m/x)

≤ n
√

1 + log(m/n) −
√

1 + log(m) + n − 1

2
√

1 + log(m/n)
.

Combining (A.8) and (A.9),

(A.10)

Sn ≤ √
2
(
n
√

1 + log(m/n) + n − 1

2
√

1 + log(m/n)

)

≤ 3n

2

√
2
(
1 + log(m/n)

)
,

which proves the second half of (3.16). The first half of (3.16) coincides with (A.6).
Using (A.10), we calculate lower bounds of xn and Sn for 1 ≤ n ≤ �m/e3	 as follows:

(A.11)

xn =
m−1∑
j=n

(xj − xj+1) + xm ≥
m−1∑
j=n

1

Sj

≥
√

2

3

m−1∑
j=n

1

j
√

1 + log(m/j)

≥
√

2

3

∫ m

n

dx

x
√

1 + log(m/x)

≥ 1

3

√
2
(
1 + log(m/n)

)
.
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For the lower bound of Sn, by (A.11), we have

Sn ≥ nxn ≥ n

3

√
2
(
1 + log(m/n)

)
.

The proof of (3.17) is complete.
By the second half of (3.16) and the first half of (3.17), we have

x2
i − x2

j = (xi + xj )(xi − xi+1 + · · · + xj−1 − xj )

= (xi + xj )

(
1

Si

+ · · · + 1

Sj−1

)

≥ 2(
√

1 + log(m/i) + √
1 + log(m/j))

9

(j−1∑
k=i

1

k
√

1 + log(m/k)

)

≥ 2(
√

1 + log(m/i) + √
1 + log(m/j))

9

∫ j

i

dx

x
√

1 + log(m/x)

= 4 log(j/i)

9
.

This proves (3.18). �

PROOF OF LEMMA 4.1. We only prove (4.10) for the case where x�m/e3	 ≤ xn+1 < w ≤
xn. The proof for the other case is similar and therefore omitted. We have (see [4], page 40)

(A.12)

gh(w) = (
w − √

2π
(
1 + w2)

ew2/2(
1 − �(w)

)) ∫ w

−∞
h′(t)�(t) dt

− (
w + √

2π
(
1 + w2)

ew2/2�(w)
) ∫ ∞

w
h′(t)

(
1 − �(t)

)
dt

:= I1 + I2.

Applying the identity

∫ w

−∞
�(t) dt = w�(w) + e−w2/2

√
2π

and noting that ‖h′‖ = 1, we have

(A.13)
∣∣∣∣
∫ w

−∞
h′(t)�(t) dt

∣∣∣∣ ≤ w�(w) + e−w2/2
√

2π
≤ 1 + w.

Therefore, applying the first half of (3.17) and (A.3), and noting that x�m/e3	 ≤ xn+1 < w ≤
xn, we obtain

(A.14) |I1| ≤ 3

(1 + w)2 ≤ C

log(m/n)
.



NORMAL APPROXIMATION FOR MANY INTERACTING WORLDS 841

For all 1 ≤ i ≤ N −1, we have h′(t) = 1 on (xi+1,mi) and h′(t) = −1 on (mi, xi). Therefore,
for all 1 ≤ i ≤ �m/e3	 − 1, we have

(A.15)

∣∣∣∣
∫ xi

xi+1

h′(t)
(
1 − �(t)

)
dt

∣∣∣∣ =
∣∣∣∣
∫ xi

xi+1

h′(t)�(t) dt

∣∣∣∣
=

∣∣∣∣
∫ mi

xi+1

�(t) dt −
∫ xi

mi

�(t) dt

∣∣∣∣
=

∫ xi

mi

�(t) dt −
∫ mi

xi+1

�(t) dt

≤ xi − xi+1

2

(
�(xi) − �(xi+1)

)

≤ (xi − xi+1)
2e−x2

i+1/2

2
√

2π

= e−x2
i+1/2

2
√

2πS2
i

,

where we have applied the monotonicity of function �(·) in the first inequality, the mean
value theorem in the second inequality, and (1.1) in the last equality. It follows from (A.15)
that

(A.16)

∣∣∣∣
∫ ∞
w

h′(t)
(
1 − �(t)

)
dt

∣∣∣∣ =
∣∣∣∣
∫ x1

w
h′(t)

(
1 − �(t)

)
dt

∣∣∣∣
≤

∫ xn

w

(
1 − �(t)

)
dt +

n−1∑
i=1

∣∣∣∣
∫ xi

xi+1

h′(t)
(
1 − �(t)

)
dt

∣∣∣∣

≤ (xn − w)
(
1 − �(w)

) +
n−1∑
i=1

e−x2
i+1/2

2
√

2πS2
i

≤ (xn − xn+1)e
−w2/2

w
√

2π
+

n−1∑
i=1

e−x2
i+1/2

2
√

2πS2
i

.

Therefore

(A.17)

|I2| = (
w + √

2π
(
1 + w2)

ew2/2�(w)
)∣∣∣∣

∫ ∞
w

h′(t)
(
1 − �(t)

)
dt

∣∣∣∣
≤ Cw2ew2/2

(
(xn − xn+1)e

−w2/2

w
√

2π
+

n−1∑
i=1

e−x2
i+1/2

2
√

2πS2
i

)

≤ C

(
xn

Sn

+
n−1∑
i=1

x2
i

S2
i

e(x2
n−x2

i+1)/2

)

≤ C

(
xn

Sn

+
n−1∑
i=1

x2
i

S2
i

(
i + 1

n

)2/9
)

≤ C

(
1

n
+ 1

n2/9

n−1∑
i=1

(i + 1)2/9

i2

)

≤ C

n2/9 ,



842 L. H. Y. CHEN AND L. V. THÀNH

where we have applied (A.16) and the fact that w ≥ x�m/e3	 ≥ √
8/3 in the first inequality,

(1.1) and the fact that w2 ≤ x2
n in the second inequality, (3.18) in the third inequality, and the

fact that Sn ≥ nxn in the fourth inequality. The proof of (4.10) follows from (A.12), (A.14),
and (A.17). �
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